Mostrar el registro sencillo del ítem

dc.contributor.advisorMurillo león, Mateo
dc.contributor.authorGarcía López, Laura Lorena
dc.date.accessioned2024-04-19T16:17:46Z
dc.date.available2024-04-19T16:17:46Z
dc.date.issued2016
dc.identifier.urihttps://bdigital.uniquindio.edu.co/handle/001/6792
dc.description.abstractToxoplasma gondii is an apicomplexan parasite responsible for Toxoplasmosis, a disease with a high prevalence in tropical and subtropical regions and also in Europe. GRAS proteins of Toxoplasma gondii including GRA3, GRA5, GRA7 and GRA8 have significant roles in the host-parasite interaction. They have the capacity to alter and modulate the expression and activity of the host cell; facilitating the invasion and stabilization of parasite within the cells. Specifically, GRA3 protein is important for the virulence phenotype of the type II strains of Toxoplasma gondii. Like many dense granules, GRA3 has no homology to proteins with described structure. A 3D theoretical model of GRA3 was built by an ab initio approach and by searching of structural orthologs we found structural similarity with BCL-XL (PDB id 1Bxl). T. gondii GRA3 has two conserved transmembrane regions like BCL-2 family members and an elongated hydrophobic cleft. This cleft may represent the binding site for other members of the Bcl-2. In the molecular docking between GRA3 model and Bak as a ligand, the binding free energy was -5.2 kcal / mol. This was congruent with the control docking between BCL-XL and Bak with a binding free energy of -5.7 Kcal / mol. Finally, recombinant protein GST-TgGRA3 expressed in E. coli and it was purified by affinity chromatography with GST column in the AKTA system in native conditions. The purification of recombinant GST-TgGRA3 was confirmed by Western-blot.eng
dc.description.tableofcontents1.Introducción 1-- 2. Materiales y métodos 3-- 3. Resultados 7-- 4. Discusión 17--5. Conclusiones 19-- 6. Bibliografía --21spa
dc.format.extent31 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad del Quindiospa
dc.rightsDerechos reservados Universidad del Quindíoeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleStructural modeling, Cloning, Expression and Purification of Toxoplasma gondii dense granule protein 3 (GRA3) in E.colieng
dc.typeTrabajo de grado - Pregradospa
dcterms.audienceEstudiantes, Docentesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalToxoplasma gondiieng
dc.subject.proposalstructural modelingeng
dc.subject.proposalrecombinant proteineng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dc.relation.referencesAchbarou, A., Mercereau-Puijalon, O., Sadak, A., Fortier, B., Leriche, M. A., Camus, D., & Dubremetz, J. F. (1991). Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii. Parasitology, 103 Pt 3, 321–329. http://doi.org/10.1017/S0031182000059837spa
dc.relation.referencesAdjogble, Koku D Z, Corinne Mercier, Jean Francois Dubremetz, Christian Hucke, Colin R. MacKenzie, Marie France Cesbron-Delauw, and Walter Däubener. 2004. “GRA9, a New Toxoplasma Gondii Dense Granule Protein Associated with the Intravacuolar Network of Tubular Membranes.” International Journal for Parasitology 34 (11): 1255–64. doi:10.1016/j.ijpara.2004.07.011.spa
dc.relation.referencesBlackman, M. J., & Bannister, L. H. (2001). Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Molecular and Biochemical Parasitology, 117(1), 11–25. http://doi.org/10.1016/S0166-6851(01)00328-0spa
dc.relation.referencesBornhorst JA, F. J. (2000). Purification of proteins using polyhistidine affinity tags. Methods Enzymol, 326:245–54.spa
dc.relation.referencesBougdour A, Durandau E, Brenier-Pinchart MP, et al. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe. 2013;13(4):489-500. doi:10.1016/j.chom.2013.03.002.spa
dc.relation.referencesCarmen, John C., and Anthony P. Sinai. 2007. “Suicide Prevention: Disruption of Apoptotic Pathways by Protozoan Parasites.” Molecular Microbiology. doi:10.1111/j.1365-2958.2007.05714.x.spa
dc.relation.referencesCesbron-D.delauw M.-F., M. F., Gendrin, C., Travier, L., Ruffiot, P., & Mercier, C. (2008). Apicomplexa in mammalian cells: Trafficking to the parasitophorous vacuole. Traffic. http://doi.org/10.1111/j.1600-0854.2008.00728.xspa
dc.relation.referencesFaherty, Christina S., and Anthony T. Maurelli. 2008. “Staying Alive: Bacterial Inhibition of Apoptosis during Infection.” Trends in Microbiology. doi:10.1016/j.tim.2008.02.001.spa
dc.relation.referencesFeng, Pinghui, Junsoo Park, Bok-Soo Lee, Sun-Hwa Lee, Richard J Bram, and Jae U Jung. 2002. “Kaposi’s Sarcoma-Associated Herpesvirus Mitochondrial K7 Protein Targets a Cellular Calcium-Modulating Cyclophilin Ligand to Modulate Intracellular Calcium Concentration and Inhibit Apoptosis.” Journal of Virology 76 (22): 11491–504. doi:10.1128/JVI.76.22.11491-11504.2002.spa
dc.relation.referencesGalluzzi, Lorenzo, Catherine Brenner, Eugenia Morselli, Zahia Touat, and Guido Kroemer. 2008. “Viral Control of Mitochondrial Apoptosis.” PLoS Pathogens. doi:10.1371/journal.ppat.1000018. Gene Runner for Windows, available on-line at www.generunner.com.spa
dc.relation.referencesGómez, J. E, Byron Ruiz, Jorge Cortés, José Montoya, and Alejandro Agudelo. 2007. “Guía de Práctica Clínica Para Toxoplasmosis Durante El Embarazo Y Toxoplasmosis Congénita.” Infect. vol.11 no.3 Bogotá July/Sept. 2007, 1–13.spa
dc.relation.referencesH.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Research 28 (2000) 235–242spa
dc.relation.referencesHanada, M., C. Aime-Sempe, T. Sato, and J. C. Reed. 1995. “Structure-Function Analysis of Bcl-2 Protein. Identification of Conserved Domains Important for Homodimerization with Bcl-2 and Heterodimerization with Bax.” Journal of Biological Chemistry. doi:10.1074/jbc.270.20.11962.spa
dc.relation.referencesHasnain, Seyed E, Rasheeda Begum, K V a Ramaiah, Sudhir Sahdev, E M Shajil, Tarvinder K Taneja, Manjari Mohan, M Athar, Nand K Sah, and M Krishnaveni. 2003. “Host-Pathogen Interactions during Apoptosis.” Journal of Biosciences 28 (3): 349–58. doi:10.1007/BF02970153.spa
dc.relation.referencesJessica C. Kissinger, Bindu Gajria,1 Li Li,1 Ian T. Paulsen,2 and David S. Roos1,* ToxoDB: accessing the Toxoplasma gondii genome. ToxoDB (http://ToxoDB.org). Nucleic Acids Res. 2003 Jan 1; 31(1): 234–236.spa
dc.relation.referencesKemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev. 2013;37(4):607-631. doi:10.1111/1574-6976.12013.spa
dc.relation.referencesKim K, Weiss LM. Toxoplasma gondii: The model apicomplexan. Int J Parasitol. 2004;34(3):423-432. doi:10.1016/j.ijpara.2003.12.009.spa
dc.relation.referencesL. Slabinski, L. Jaroszewski, L. Rychlewski, I.A. Wilson, S.A. Lesley, A. Godzik, XtalPred: a web server for prediction of protein crystallizability, Bioinformatics 23 (24) (2007) 3403–3405.spa
dc.relation.referencesLabruyère, E., Lingnau, M., Mercier, C., and Sibley, L.D. (1999) Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. Mol. Biochem. Parasitol. 102, 311-324spa
dc.relation.referencesMa, J. S., Sasai, M., Ohshima, J., Lee, Y., Bando, H., Takeda, K., & Yamamoto, M. (2014). Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. The Journal of Experimental Medicine, 211(10), 2013–32. http://doi.org/10.1084/jem.20131272spa
dc.relation.referencesMatthiesen SH, Shenoy SM, Kim K, Singer RH, Satir BH. A parafusin-related Toxoplasma protein in Ca2 + -regulated secretory organelles. Eur. J. Cell. Biol. 2001; 80:775–783. [PubMed: 11831391]spa
dc.relation.referencesNicolle C, M. L. (1908). Sur une infection a corps de Leishman (ou organisms voisons) du gondi. Sci, C. R. Acad, 147:763.spa
dc.relation.referencesNilsson J., Stahl S., J. Lundeberg, Uhlen M., N. P. (1997). Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif., 11 1-16 10.spa
dc.relation.referencesOltvai, Zoltán N., and Stanley J. Korsmeyer. 1994. “Checkpoints of Dueling Dimers Foil Death Wishes.” Cell 79 (2): 189–92. doi:10.1016/0092-8674(94)90188-0.spa
dc.relation.referencesPetros, A M, D G Nettesheim, Y Wang, E T Olejniczak, R P Meadows, J Mack, K Swift, et al. 2000. “Rationale for Bcl-xL/Bad Peptide Complex Formation from Structure, Mutagenesis, and Biophysical Studies.” Protein Science : A Publication of the Protein Society 9 (12): 2528–34. doi:10.1110/ps.9.12.2528.spa
dc.relation.referencesPope, B., & Kent, H. M. (1996). High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Research, 24(3), 536–537. http://doi.org/10.1093/nar/24.3.536spa
dc.relation.referencesRandall, L. M., & Hunter, C. A. (2011). Parasite dissemination and the pathogenesis of toxoplasmosis. European Journal of Microbiology and Immunology, 1(1), 3–9.spa
dc.relation.referencesRath A, Glibowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A. 2009;106(6):1760-1765. doi:10.1073/pnas.0813167106.spa
dc.relation.referencesSantos T.R., Costa A.J., Toniollo G.H., Luvizotto M.C.R., Benetti A.H., Santos R.R., Matta D.H., Lopes W.D.Z., Oliveira J.A. & Oliveira G.P. 2009. Prevalence of anti-Toxoplasma gondii antibodies in dairy cattle, dogs and humans from the Jauru micro-region, Mato Grosso state, Brazil. Vet. Parasitol. 161:324-326.spa
dc.relation.referencesSattler, M. 1997. “Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis.” Science 275 (5302): 983–86. doi:10.1126/science.275.5302.983.spa
dc.relation.referencesTerpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60(5), 523–533. http://doi.org/10.1007/s00253-002-1158-6spa
dc.relation.referencesWeikert C, Sauer U, Bailey JE. An Escherichia coli host strain useful for efficient overproduction of secreted recombinant protein. Biotechnol Bioeng. 1998;59(3):386-391. doi:10.1002/(SICI)1097-0290(19980805)59:3<386::AID-BIT16>3.0.CO;2-C.spa
dc.relation.referencesX.-M. Yin, Z. N. Oltvai, S. J. Korsmeyer, “BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax”. Nature 369, 321 (1994).spa
dc.contributor.researchgroupGEPAMOL (Grupo de estudio en Parasitología Molecular)spa
dc.description.degreelevelPregradospa
dc.description.degreenameBiólogospa
dc.identifier.instnameUniversidad del Quindiospa
dc.identifier.reponameRepositorio Institucionalspa
dc.identifier.repourlhttps://bdigital.uniquindio.edu.cospa
dc.publisher.facultyFacultad de Ciencias Básicas y Tecnologíasspa
dc.publisher.placeArmenia Quindio Colombiaspa
dc.publisher.programCiencias Básicas y Tecnologías - Biologíaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos reservados Universidad del Quindío
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos reservados Universidad del Quindío